منابع مشابه
OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants.
Previous research has demonstrated that AtPHR1 plays a central role in phosphate (Pi)-starvation signaling in Arabidopsis thaliana. In this work, two OsPHR genes from rice (Oryza sativa) were isolated and designated as OsPHR1 and OsPHR2 based on amino acid sequence homology to AtPHR1. Their functions in Pi signaling in rice were investigated using transgenic plants. Our results showed that both...
متن کاملSpatio-temporal transcript profiling of rice roots and shoots in response to phosphate starvation and recovery.
Using rice (Oryza sativa) as a model crop species, we performed an in-depth temporal transcriptome analysis, covering the early and late stages of Pi deprivation as well as Pi recovery in roots and shoots, using next-generation sequencing. Analyses of 126 paired-end RNA sequencing libraries, spanning nine time points, provided a comprehensive overview of the dynamic responses of rice to Pi stre...
متن کاملRice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner.
In plants, sensing the levels of external and internal nutrients is essential for reprogramming the transcriptome and adapting to the fluctuating environment. Phosphate (Pi) is a key plant nutrient, and a large proportion of Pi starvation-responsive genes are under the control of Phosphate Starvation Response Regulator 1 (PHR1) in Arabidopsis (AtPHR1) and its homologs, such as Oryza sativa (Os)...
متن کاملCross-talk between Phosphate Starvation and Other Environmental Stress Signaling Pathways in Plants
The maintenance of inorganic phosphate (Pi) homeostasis is essential for plant growth and yield. Plants have evolved strategies to cope with Pi starvation at the transcriptional, post-transcriptional, and post-translational levels, which maximizes its availability. Many transcription factors, miRNAs, and transporters participate in the Pi starvation signaling pathway where their activities are ...
متن کاملEthylene's role in phosphate starvation signaling: more than just a root growth regulator.
Phosphate (Pi) is a common limiter of plant growth due to its low availability in most soils. Plants have evolved elaborate mechanisms for sensing Pi deficiency and for initiating adaptive responses to low Pi conditions. Pi signaling pathways are modulated by both local and long-distance, or systemic, sensing mechanisms. Local sensing of low Pi initiates major root developmental changes aimed a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Plant Signaling & Behavior
سال: 2011
ISSN: 1559-2324
DOI: 10.4161/psb.6.7.15377